Remove 2007 Remove Experimentation Remove Measurement Remove Testing
article thumbnail

Measuring Incrementality: Controlled Experiments to the Rescue!

Occam's Razor

This: You understand all the environmental variables currently in play, you carefully choose more than one group of "like type" subjects, you expose them to a different mix of media, measure differences in outcomes, prove / disprove your hypothesis (DO FACEBOOK NOW!!!), The nice thing is that you can also test that!

article thumbnail

Experiment design and modeling for long-term studies in ads

The Unofficial Google Data Science Blog

by HENNING HOHNHOLD, DEIRDRE O'BRIEN, and DIANE TANG In this post we discuss the challenges in measuring and modeling the long-term effect of ads on user behavior. A/B testing is used widely in information technology companies to guide product development and improvements.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Knowledge

Occam's Razor

Key To Your Digital Success: Web Analytics Measurement Model. " Measuring Incrementality: Controlled Experiments to the Rescue! Barriers To An Effective Web Measurement Strategy [+ Solutions!]. Measuring Online Engagement: What Role Does Web Analytics Play? "Engagement" How Do I Measure Success?

KPI 125
article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

the weight given to Likes in our video recommendation algorithm) while $Y$ is a vector of outcome measures such as different metrics of user experience (e.g., Taking measurements at parameter settings further from control parameter settings leads to a lower variance estimate of the slope of the line relating the metric to the parameter.

article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

Sometimes, we escape the clutches of this sub optimal existence and do pick good metrics or engage in simple A/B testing. First, you figure out what you want to improve; then you create an experiment; then you run the experiment; then you measure the results and decide what to do. Testing out a new feature. Form a hypothesis.

Metrics 157
article thumbnail

To Balance or Not to Balance?

The Unofficial Google Data Science Blog

In an ideal world, experimentation through randomization of the treatment assignment allows the identification and consistent estimation of causal effects. A naïve way to solve this problem would be to compare the proportion of buyers between the exposed and unexposed groups, using a simple test for equality of means.

article thumbnail

Changing assignment weights with time-based confounders

The Unofficial Google Data Science Blog

Another reason to use ramp-up is to test if a website's infrastructure can handle deploying a new arm to all of its users. The website wants to make sure they have the infrastructure to handle the feature while testing if engagement increases enough to justify the infrastructure. We offer two examples where this may be the case.