Remove 2009 Remove Data Collection Remove Risk
article thumbnail

ML internals: Synthetic Minority Oversampling (SMOTE) Technique

Domino Data Lab

Insufficient training data in the minority class — In domains where data collection is expensive, a dataset containing 10,000 examples is typically considered to be fairly large. This carries the risk of this modification performing worse than simpler approaches like majority under-sampling. Chawla et al. link] Hall, L.,

article thumbnail

Themes and Conferences per Pacoid, Episode 9

Domino Data Lab

The lens of reductionism and an overemphasis on engineering becomes an Achilles heel for data science work. Instead, consider a “full stack” tracing from the point of data collection all the way out through inference. He talked about the risks of reductionism and Descartes’ questionable legacy. Ergo, less interpretable.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Explaining black-box models using attribute importance, PDPs, and LIME

Domino Data Lab

For this demo we’ll use the freely available Statlog (German Credit Data) Data Set, which can be downloaded from Kaggle. This dataset classifies customers based on a set of attributes into two credit risk groups – good or bad. PDPs for the bicycle count prediction model (Molnar, 2009). Ribeiro, M. Guestrin, C.,

Modeling 139
article thumbnail

Misleading Statistics Examples – Discover The Potential For Misuse of Statistics & Data In The Digital Age

datapine

Exclusive Bonus Content: Download Our Free Data Integrity Checklist. Get our free checklist on ensuring data collection and analysis integrity! Misleading statistics refers to the misuse of numerical data either intentionally or by error. Exclusive Bonus Content: Download Our Free Data Integrity Checklist.