Remove Dashboards Remove Data Lake Remove Snapshot
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights.

Data Lake 114
article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources.

Metadata 117
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Use Apache Iceberg in a data lake to support incremental data processing

AWS Big Data

Iceberg has become very popular for its support for ACID transactions in data lakes and features like schema and partition evolution, time travel, and rollback. and later supports the Apache Iceberg framework for data lakes. The snapshot points to the manifest list. AWS Glue 3.0

Data Lake 127
article thumbnail

Manage your data warehouse cost allocations with Amazon Redshift Serverless tagging

AWS Big Data

Amazon Redshift Serverless makes it simple to run and scale analytics without having to manage your data warehouse infrastructure. For Filter by resource type , you can filter by Workgroup , Namespace , Snapshot , and Recovery Point. For this post, we don’t include any tag filters, so we can view all the resources across our account.

article thumbnail

Power enterprise-grade Data Vaults with Amazon Redshift – Part 2

AWS Big Data

Amazon Redshift is a popular cloud data warehouse, offering a fully managed cloud-based service that seamlessly integrates with an organization’s Amazon Simple Storage Service (Amazon S3) data lake, real-time streams, machine learning (ML) workflows, transactional workflows, and much more—all while providing up to 7.9x

article thumbnail

Architectural patterns for real-time analytics using Amazon Kinesis Data Streams, part 1

AWS Big Data

In this post, we will review the common architectural patterns of two use cases: Time Series Data Analysis and Event Driven Microservices. All these architecture patterns are integrated with Amazon Kinesis Data Streams. The raw data can be streamed to Amazon S3 for archiving.

Analytics 123
article thumbnail

Exploring real-time streaming for generative AI Applications

AWS Big Data

Furthermore, data events are filtered, enriched, and transformed to a consumable format using a stream processor. The result is made available to the application by querying the latest snapshot. OpenSearch Service offers visualization capabilities powered by OpenSearch Dashboards and Kibana (1.5

Data Lake 102