Remove Data Architecture Remove Data Processing Remove Data Warehouse Remove Technology
article thumbnail

5 misconceptions about cloud data warehouses

IBM Big Data Hub

In today’s world, data warehouses are a critical component of any organization’s technology ecosystem. The rise of cloud has allowed data warehouses to provide new capabilities such as cost-effective data storage at petabyte scale, highly scalable compute and storage, pay-as-you-go pricing and fully managed service delivery.

article thumbnail

The Top Three Entangled Trends in Data Architectures: Data Mesh, Data Fabric, and Hybrid Architectures

Cloudera

Each of these trends claim to be complete models for their data architectures to solve the “everything everywhere all at once” problem. Data teams are confused as to whether they should get on the bandwagon of just one of these trends or pick a combination. First, we describe how data mesh and data fabric could be related.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

One of the key challenges in modern big data management is facilitating efficient data sharing and access control across multiple EMR clusters. Organizations have multiple Hive data warehouses across EMR clusters, where the metadata gets generated. The producer account will host the EMR cluster and S3 buckets.

article thumbnail

96 Percent of Businesses Can’t Be Wrong: How Hybrid Cloud Came to Dominate the Data Sector

Cloudera

Modern, real-time businesses require accelerated cycles of innovation that are expensive and difficult to maintain with legacy data platforms. Cloud technologies and respective service providers have evolved solutions to address these challenges. . The amount of data being collected grew, and the first data warehouses were developed.

article thumbnail

Modernize your legacy databases with AWS data lakes, Part 3: Build a data lake processing layer

AWS Big Data

This is the final part of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to process data with Amazon Redshift Spectrum and create the gold (consumption) layer. His focus areas are MLOps, feature stores, data lakes, model hosting, and generative AI.

article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

They enable transactions on top of data lakes and can simplify data storage, management, ingestion, and processing. These transactional data lakes combine features from both the data lake and the data warehouse. Data can be organized into three different zones, as shown in the following figure.

Data Lake 114
article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. The system had an integration with legacy backend services that were all hosted on premises. The downside here is over-provisioning.