Remove Insurance Remove Predictive Modeling Remove Risk Remove Statistics
article thumbnail

Is Artificial Intelligence relevant to insurance?

IBM Big Data Hub

In this first of two posts, I investigate the anatomy of artificial intelligence and its impact on insurance. The early versions of AI were capable of predictive modelling (e.g., The four categories of predictive modelling, robotics, speech and image recognition are collectively known as algorithm-based AI or Discriminative AI.

article thumbnail

What is Model Risk and Why Does it Matter?

DataRobot Blog

With the big data revolution of recent years, predictive models are being rapidly integrated into more and more business processes. This provides a great amount of benefit, but it also exposes institutions to greater risk and consequent exposure to operational losses.

Risk 111
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

What is data analytics? Analyzing and managing data for decisions

CIO Business Intelligence

The chief aim of data analytics is to apply statistical analysis and technologies on data to find trends and solve problems. Data analytics draws from a range of disciplines — including computer programming, mathematics, and statistics — to perform analysis on data in an effort to describe, predict, and improve performance.

article thumbnail

What to Do When AI Fails

O'Reilly on Data

This article answers these questions, based on our combined experience as both a lawyer and a data scientist responding to cybersecurity incidents, crafting legal frameworks to manage the risks of AI, and building sophisticated interpretable models to mitigate risk. All predictive models are wrong at times?—just

Risk 362
article thumbnail

3 Key Components of the Interdisciplinary Field of Data Science

Domino Data Lab

Through a marriage of traditional statistics with fast-paced, code-first computer science doctrine and business acumen, data science teams can solve problems with more accuracy and precision than ever before, especially when combined with soft skills in creativity and communication. Math and Statistics Expertise.

article thumbnail

Seven Steps to Success for Predictive Analytics in Financial Services

Birst BI

A personal crystal ball that predicts your days ahead is what financial services firms everywhere want. Every day, these companies pose questions such as: Will this new client provide a good return on investment, relative to the potential risk? Is this existing client a termination risk? Will this next trade return a profit?

article thumbnail

Proposals for model vulnerability and security

O'Reilly on Data

Apply fair and private models, white-hat and forensic model debugging, and common sense to protect machine learning models from malicious actors. Like many others, I’ve known for some time that machine learning models themselves could pose security risks. they can train their own surrogate model.

Modeling 228