Remove Analytics Remove Data Integration Remove Data Lake Remove Data Processing
article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights.

Data Lake 114
article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

Use cases for Hive metastore federation for Amazon EMR Hive metastore federation for Amazon EMR is applicable to the following use cases: Governance of Amazon EMR-based data lakes – Producers generate data within their AWS accounts using an Amazon EMR-based data lake supported by EMRFS on Amazon Simple Storage Service (Amazon S3)and HBase.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Unlock scalable analytics with a secure connectivity pattern in AWS Glue to read from or write to Snowflake

AWS Big Data

As organizations increasingly rely on data stored across various platforms, such as Snowflake , Amazon Simple Storage Service (Amazon S3), and various software as a service (SaaS) applications, the challenge of bringing these disparate data sources together has never been more pressing.

Analytics 105
article thumbnail

Create an Apache Hudi-based near-real-time transactional data lake using AWS DMS, Amazon Kinesis, AWS Glue streaming ETL, and data visualization using Amazon QuickSight

AWS Big Data

With the rapid growth of technology, more and more data volume is coming in many different formats—structured, semi-structured, and unstructured. Data analytics on operational data at near-real time is becoming a common need. a new version of AWS Glue that accelerates data integration workloads in AWS.

article thumbnail

Use AWS Glue to streamline SFTP data processing

AWS Big Data

In today’s data-driven world, seamless integration and transformation of data across diverse sources into actionable insights is paramount. With AWS Glue, you can discover and connect to hundreds of diverse data sources and manage your data in a centralized data catalog. Choose Store a new secret.

article thumbnail

Modernize your ETL platform with AWS Glue Studio: A case study from BMS

AWS Big Data

In addition to using native managed AWS services that BMS didn’t need to worry about upgrading, BMS was looking to offer an ETL service to non-technical business users that could visually compose data transformation workflows and seamlessly run them on the AWS Glue Apache Spark-based serverless data integration engine.

article thumbnail

Enhance monitoring and debugging for AWS Glue jobs using new job observability metrics, Part 3: Visualization and trend analysis using Amazon QuickSight

AWS Big Data

You can slice data by different dimensions like job name, see anomalies, and share reports securely across your organization. With these insights, teams have the visibility to make data integration pipelines more efficient. Typically, you have multiple accounts to manage and run resources for your data pipeline.

Metrics 117