Remove Analytics Remove Metadata Remove Optimization Remove Unstructured Data
article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources. Data lakes provide a unified repository for organizations to store and use large volumes of data.

Metadata 117
article thumbnail

What is a data scientist? A key data analytics role and a lucrative career

CIO Business Intelligence

What is a data scientist? Data scientists are analytical data experts who use data science to discover insights from massive amounts of structured and unstructured data to help shape or meet specific business needs and goals. Semi-structured data falls between the two.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

How ZS built a clinical knowledge repository for semantic search using Amazon OpenSearch Service and Amazon Neptune

AWS Big Data

We use leading-edge analytics, data, and science to help clients make intelligent decisions. AWS services such as Amazon Neptune and Amazon OpenSearch Service form part of their data and analytics pipelines, and AWS Batch is used for long-running data and machine learning (ML) processing tasks.

article thumbnail

Petabyte-scale log analytics with Amazon S3, Amazon OpenSearch Service, and Amazon OpenSearch Ingestion

AWS Big Data

Organizations often need to manage a high volume of data that is growing at an extraordinary rate. At the same time, they need to optimize operational costs to unlock the value of this data for timely insights and do so with a consistent performance. We think of this concept as inside-out data movement.

Data Lake 123
article thumbnail

Optimize data layout by bucketing with Amazon Athena and AWS Glue to accelerate downstream queries

AWS Big Data

In the era of data, organizations are increasingly using data lakes to store and analyze vast amounts of structured and unstructured data. Data lakes provide a centralized repository for data from various sources, enabling organizations to unlock valuable insights and drive data-driven decision-making.

article thumbnail

5 Ways Data Modeling Is Critical to Data Governance

erwin

They also face increasing regulatory pressure because of global data regulations , such as the European Union’s General Data Protection Regulation (GDPR) and the new California Consumer Privacy Act (CCPA), that went into effect last week on Jan. So here’s why data modeling is so critical to data governance.

article thumbnail

Prioritizing Data: Why a Solid Data Management Strategy Will Be Critical in 2024

Ontotext

In 2023, data leaders and enthusiasts were enamored of — and often distracted by — initiatives such as generative AI and cloud migration. LLMs can optimize several tasks, such as updating taxonomies, classifying entities, and extracting new properties and relationships from unstructured data.