2018

article thumbnail

Five Strategies for Slaying the Data Puking Dragon.

Occam's Razor

If you bring sharp focus, you increase chances of attention being diverted to the right places. That in turn will drive smarter questions, which will elicit thoughtful answers from available data. The result will be data-influenced actions that result in a long-term strategic advantage. It all starts with sharp focus. Consider these three scenarios….

Strategy 263
article thumbnail

Deep automation in machine learning

O'Reilly on Data

We need to do more than automate model building with autoML; we need to automate tasks at every stage of the data pipeline. In a previous post , we talked about applications of machine learning (ML) to software development, which included a tour through sample tools in data science and for managing data infrastructure. Since that time, Andrej Karpathy has made some more predictions about the fate of software development: he envisions a Software 2.0 , in which the nature of software development h

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Meta-Learning For Better Machine Learning

Rocket-Powered Data Science

In a related post we discussed the Cold Start Problem in Data Science — how do you start to build a model when you have either no training data or no clear choice of model parameters. An example of a cold start problem is k -Means Clustering, where the number of clusters k in the data set is not known in advance, and the locations of those clusters in feature space ( i.e., the cluster means) are not known either.

article thumbnail

What Business Analysts Can Learn From Swiss Cheese

BA Learnings

Swiss cheese has holes in various places on different slices of cheese when you cut it up. Let’s imagine these holes reflect weaknesses in the system where mistakes can pass through, afterall no system is perfect. One mistake passing through a hole in one slice of cheese might remain unnoticed and not lead to a business catastrophe, if it's corrected.

article thumbnail

The Forrester Wave™: AI/ML Platforms: Vendor Strategy, Market Presence, and Capabilities Overview

As enterprises evolve their AI from pilot programs to an integral part of their tech strategy, the scope of AI expands from core data science teams to business, software development, enterprise architecture, and IT ops teams. Enterprises need a platform that can make broader AI teams more productive, implementing more complex use cases and harnessing the fast pace of new AI technologies.

article thumbnail

Consolidation around Cognos 11.1 and other news from IBM Analytics University

David Menninger's Analyst Perspectives

IBM's Analytics University (held in both Miami and Stockholm) brought about some large changes. Big announcements this year included a consolidation of IBM's Watson Analytics into Cognos 11.1, helping provide some clarity to their analytics offerings, along with new visualizations and better data preparation. This also includes a new conversational assistant to help generate narrative explanations of displays and interactive queries.

Analytics 167
article thumbnail

Top 12 BI tools of 2019

CIO Business Intelligence

With more and more data at our fingertips, it’s getting harder to focus on the information relevant to our problems and present it in an actionable way. That’s what business intelligence is all about.

More Trending

article thumbnail

The most practical causal inference book I’ve read (is still a draft)

Data Science and Beyond

I’ve been interested in the area of causal inference in the past few years. In my opinion it’s more exciting and relevant to everyday life than more hyped data science areas like deep learning. However, I’ve found it hard to apply what I’ve learned about causal inference to my work. Now, I believe I’ve finally found a book with practical techniques that I can use on real problems: Causal Inference by Miguel Hernán and Jamie Robins.

article thumbnail

The State of Machine Learning in Business Today

Bruno Aziza

Now more than ever, businesses are deploying machine learning to drive business results. Learn about the state of machine learning in business today.

article thumbnail

Celebrating Db2’s 25 years of awesome

IBM Big Data Hub

March 16, 2018 is the 25th anniversary of the Db2 relational database product on Linux UNIX and Windows. Over the past 25 years, this team has built the Db2 brand for the distributed product, complementing IBM’s Db2 mainframe offering and creating a market force.

Marketing 102
article thumbnail

Predictions 2019: Steady Evolution In Blockchain Will Continue, Unless Disillusionment Causes A “Winter”

Martha Bennett

“The visionaries will forge ahead; those hoping for immediate industry and process transformation will give up.” This was the opening sentence of my blog post accompanying Forrester’s DLT/blockchain predictions for 2018. I’m repeating it here, because it’ll continue to hold true for 2019 — with one proviso: There’s a real risk that we’ll experience the beginning […].

Risk 98
article thumbnail

From Hadoop to Data Lakehouse

Getting off of Hadoop is a critical objective for organizations, with data executives well aware of the significant benefits of doing so. The problem is, there are few options available that minimize the risk to the business during the migration process and that’s one of the reasons why many organizations are still using Hadoop today. By migrating to the data lakehouse, you can get immediate benefits from day one using Dremio’s phased migration approach.

article thumbnail

Unsexy Fundamentals Focus: User Experiences That Print Money

Occam's Razor

Like me, I'm sure you are working on complex challenges when it comes to data. Multi-petabyte data warehouses. Multi-touch, cross-channel attribution analysis. Media mix modeling. Predictive analytics. Human-centric analysis. Oh, and let's not forget the application of machine learning to every facet of your work. It is genuinely fun to work on these opportunities.

article thumbnail

Building tools for enterprise data science

O'Reilly on Data

The O’Reilly Data Show Podcast: Vitaly Gordon on the rise of automation tools in data science. In this episode of the Data Show , I spoke with Vitaly Gordon , VP of data science and engineering at Salesforce. As the use of machine learning becomes more widespread, we need tools that will allow data scientists to scale so they can tackle many more problems and help many more people.

article thumbnail

Recent top-selling books in AI and Machine Learning

Rocket-Powered Data Science

Below are the individual links to these Data Science, Artificial Intelligence and Machine Learning books, all of which are top sellers on Amazon… “The Book of Why: The New Science of Cause and Effect” “Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems” “Deep Learning (Adaptive Computation and Machine Learning)” “Applied Artificial Intelligence: A Handbook For Business Leaders

article thumbnail

Confirmation Bias: What BAs Can Learn From Data Scientists

BA Learnings

When we have a strong belief about something or a bias towards a particular opinion, we consciously or unconsciously seek out evidence that validates what we already believe. When we come across contrary evidence, our default behaviour is to ignore it, diminish it or in some cases, conclude that it’s wrong prematurely without exploring its merits. This behaviour is due to a cognitive bias known as confirmation bias.

article thumbnail

ERM Program Fundamentals for Success in the Banking Industry

Speaker: William Hord, Senior VP of Risk & Professional Services

Enterprise Risk Management (ERM) is critical for industry growth in today’s fast-paced and ever-changing risk landscape. When building your ERM program foundation, you need to answer questions like: Do we have robust board and management support? Do we understand and articulate our bank’s risk appetite and how that impacts our business units? How are we measuring and rating our risk impact, likelihood, and controls to mitigate our risk?

article thumbnail

News and Announcements from Tableau and TC18

David Menninger's Analyst Perspectives

Once again I attended Tableau's Users Conference, along with 17,000 other attendees, affectionately self-referred to as "data nerds". Pushing the envelope in data capabilities and access, Tableau introduced the "Ask Data" feature, allowing users to prose natural language queries and receive a response, along with new data preparation capabilities and other enhancements to help data analysts.

Data Lake 160
article thumbnail

IRM Is Essential for Digital Transformation Success

John Wheeler

Last week, I had the distinct privilege to join my Gartner colleagues from our Risk Management Leadership Council in presenting the Q4 2018 Emerging Risk Report. We hosted more than 500 risk leaders across the globe in our exploration of the most critical risks. The Q4 2018 Emerging Risks Survey, designed by Gartner, captures and analyzes senior executives’ opinions on emerging risks and provides actionable insight on identifying and mitigating these risks.

article thumbnail

Transform Your Organization From Data-Driven To Insights-Driven

Boris Evelson

Over the last five years, most large enterprises have slowly but surely matured from being data-aware to data-driven. They all collect data from operational and transactional applications; process the data into data lakes, data hubs, data warehouses, and data marts; and build business intelligence (BI) and analytics applications to understand what the data is telling […].

article thumbnail

Top 10 Data Governance Predictions for 2019

erwin

This past year witnessed a data governance awakening – or as the Wall Street Journal called it, a “global data governance reckoning.” There was tremendous data drama and resulting trauma – from Facebook to Equifax and from Yahoo to Marriott. The list goes on and on. And then, the European Union’s General Data Protection Regulation (GDPR) took effect , with many organizations scrambling to become compliant.

article thumbnail

The B2B Sales Leader's Guide for Any Economic Environment

When economic headwinds pick up, sales leaders are the first to sound the alarm — and chart a new course. Longer sales cycles, larger buying committees, increased price pressure, and smaller teams can quickly combine to reduce your margin for error and increase the urgency to find a solution. To thrive in a challenging environment, sales teams need a rock-solid grasp of the fundamentals and the biggest force-multipliers they can get their hands on.

article thumbnail

Getting To Trusted Data Via AI, Machine Learning And Blockchain

Bruno Aziza

Establishing trust in data is critical. Organizations are now employing AI, Machine Learning, Blockchain to ensure data reliability and integrity.

article thumbnail

What's the difference between data lakes and data warehouses?

IBM Big Data Hub

If you’ve heard the debate among IT professionals about data lakes versus data warehouses, you might be wondering which is better for your organization. You might even be wondering how these two approaches are different at all.

article thumbnail

A Comprehensive Guide to Real-Time Big Data Analytics

ScienceSoft

Our big data consultants have come up with an easy guide to real-time big data analytics. We explain the term and describe a typical architecture, as well as share our thoughts about whether real-time analytics can be a competitive advantage.

article thumbnail

Closing Data's Last-Mile Gap: Visualizing For Impact!

Occam's Razor

I worry about data’s last-mile gap a lot. As a lover of data-influenced decision making, perhaps you worry as well. A lot of hard work has gone into collecting the requirements and implementation. An additional massive investment was made in the effort to perform ninja like analysis. The end result was a collection trends and insights. The last-mile gap is the distance between your trends and getting an influential company leader to take action.

article thumbnail

The Definitive Guide to Dashboard Design

Dashboard design can mean the difference between users excitedly embracing your product or ignoring it altogether. Great dashboards lead to richer user experiences and significant return on investment (ROI), while poorly designed dashboards distract users, suppress adoption, and can even tarnish your project or brand. That’s one of the many reasons we wrote The Definitive Guide to Dashboard Design—to help you avoid common pitfalls, including… Cramming too much onto one screen and expecting the u

article thumbnail

Managing risk in machine learning

O'Reilly on Data

Considerations for a world where ML models are becoming mission critical. In this post, I share slides and notes from a keynote I gave at the Strata Data Conference in New York last September. As the data community begins to deploy more machine learning (ML) models, I wanted to review some important considerations. Let’s begin by looking at the state of adoption.

article thumbnail

Machine Learning Making Big Moves in Marketing

Rocket-Powered Data Science

Machine Learning is (or should be) a core component of any marketing program now, especially in digital marketing campaigns. The following insightful quote by Dan Olley (EVP of Product Development and CTO at Elsevier) sums up the urgency and criticality of the situation: “If CIOs invested in machine learning three years ago, they would have wasted their money.

article thumbnail

How AI is Lowering the Barrier to Entry for BI and Analytics

Birst BI

According to Gartner, more than 3,000 CIOs ranked Business Intelligence (BI) and Analytics as the top differentiating technology for their organizations. If BI and Analytics is such a game-changer, then why is the average adoption rate in organizations only 32%? Despite the efforts of Cloud BI vendors making it easier for users to acquire, explore, and analyze data sources without IT dependency, lack of data literacy and analytic skills still hinder widespread adoption for data-driven decision m

article thumbnail

Big Data And Analytics Has Been Around Forever! Why Is It Still Important?

Timo Elliott

These are some quick answers to some common questions I get about Business Intelligence, Big Data, and Analytics: Big Data. The term has been around for quite some time. Why is it still important for innovative businesses? It’s clear that data is one of the most important assets of the future. Organizations want to optimize their end-to-end customer experience, to improve productivity, and to engage the workforce in new ways.

article thumbnail

Connect, Care, Convert: Secrets to Establishing Trust with Niche Markets and Turning Them Into Clients

Speaker: Lynnette Khalfani-Cox, The Money Coach®

Niche markets represent a huge opportunity for the financial services industry in America. From college students and women to communities of color and low-to-moderate-income households, niche populations have specialized financial needs – but they often underutilize many valuable financial products and services. How can you better connect with these consumers?

article thumbnail

What Kagglers are using for Text Classification

MLWhiz

With the problem of Image Classification is more or less solved by Deep learning, Text Classification is the next new developing theme in deep learning. For those who don’t know, Text classification is a common task in natural language processing, which transforms a sequence of text of indefinite length into a category of text. How could you use that?

article thumbnail

AI Unlocks The Business Intelligence In BI

Boris Evelson

In most enterprises, data access is a fait accompli: 72% of global data and analytics decision makers say that they can access the data they need to obtain insights in a timely manner. However, even the most modern BI tools that make data more accessible still require significant subject matter expertise to find the right […].

article thumbnail

Crawling the internet: data science within a large engineering system

The Unofficial Google Data Science Blog

by BILL RICHOUX Critical decisions are being made continuously within large software systems. Often such decisions are the responsibility of a separate machine learning (ML) system. But there are instances when having a separate ML system is not ideal. In this blog post we describe one of these instances — Google search deciding when to check if web pages have changed.

article thumbnail

Machine Learning And Data -- Where You'd Least Expect It

Bruno Aziza

Since the concept of “machines learning” was introduced in the 1950s, the field has gone from a cryptic domain understood by a few (Turing, Markov, Legendre, Laplace or Bayes) to a technology that every company must deploy.

article thumbnail

Online Banking Without Third-Party Cookies

Since the inception of cookies in 1994, advertisers and brands have come to depend on them as a tool to help websites remember users. Consumers have tolerated them as a necessary cost of doing business online, even as they’ve grown to loathe them. As the end of third-party cookies looms ever closer, some consumers are rejoicing in their demise while many advertisers and brands worry about how they’ll move forward without them.